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Liouvillian dynamics of the Hopf bifurcation
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Two-dimensional vector fields undergoing a Hopf bifurcation are studied in a Liouville-equation approach.
The Liouville equation rules the time evolution of statistical ensembles of trajectories issued from random
initial conditions, but evolving under the deterministic dynamics. The time evolution of the probability densi-
ties of such statistical ensembles can be decomposed in terms of the spectrum of the resonances~i.e., the
relaxation rates! of the Liouvillian operator or the related Frobenius-Perron operator. The spectral decompo-
sition of the Liouvillian operator is explicitly constructed before, at, and after the Hopf bifurcation. Because of
the emergence of time oscillations near the Hopf bifurcation, the resonance spectrum turns out to be complex
and defined by both relaxation rates and oscillation frequencies. The resonance spectrum is discrete far from
the bifurcation and becomes continuous at the bifurcation. This continuous spectrum is caused by the critical
slowing down of the oscillations occurring at the Hopf bifurcation and it leads to power-law relaxation as 1/At
of the probability densities and statistical averages at long timest→`. Moreover, degeneracy in the resonance
spectrum is shown to yield a Jordan-block structure in the spectral decomposition.
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I. INTRODUCTION

In many nonlinear dynamical systems, sensitivity to init
conditions as well as bifurcations deeply affect the time e
lution. In these cases, trajectories issued from random in
conditions evolve differently, leading to a statistical distrib
tion of the trajectories over the phase space. Such statis
time evolutions are of great experimental importance
cause many time-dependent phenomena are characteriz
the time-correlation function between the statistical distrib
tion of initial conditions and an observable quantity me
sured at some later time. In this context, a major preoccu
tion is to understand, thanks to these time-correlat
functions, how the system relaxes at long times towar
certain stationary or time-dependent state.

Recently, methods have been developed in order to
dict the behavior of the time-correlation functions and,
particular, to calculate the relaxation rates of the syst
@1–4#. These methods are based on a probabilistic appro
in which the statistical ensembles of trajectories are
scribed in terms of probability densities defined in the ph
space of the system@1#. The deterministic dynamics i
known to induce the time evolution of the probability den
ties. Since the probability is locally conserved in pha
space, the density obeys a conservation equation called
generalized Liouville equation@1#. Integrating the Liouville
equation in time, we obtain the so-called Frobenius-Per
operator, which gives the probability density at current tim
in terms of the initial probability density of the random
distributed initial data@4#.

During the last decade, much work has been devote
the Frobenius-Perron operator of different systems@2–10#
and to the related Pollicott-Ruelle resonances@11,12#. These
1063-651X/2001/64~5!/056232~17!/$20.00 64 0562
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resonances are defined as the generalized eigenvalues o
Frobenius-Perron operator or of the Liouvillian operator a
they control the relaxation of the probability density towa
the stationary state if it exists. Accordingly, their knowled
provides us with the time-asymptotic behavior of the tim
correlation functions that characterize the system. In t
context, we have previously obtained the spectrum of
Liouvillian operator for the pitchfork bifurcation@8#. In such
a bifurcation, all the asymptotic states are stationary.

The purpose of the present paper is to study the Liou
lian dynamics of systems undergoing a Hopf bifurcati
@13#, which is known to generate oscillatory time behavio
The importance of the Hopf bifurcation holds in the fact th
this bifurcation provides a unique mechanism to explain
emergence of oscillatory behavior in far-from-equilibriu
physicochemical systems@1#. This bifurcation has been
much studied at the level of the trajectories@1,14–16#. The
effect of stochastic~or noisy! perturbations on the Hopf bi
furcation have also been studied in the frameworks of
Langevin, Fokker-Planck, and master equations@17–19#, as
well as in the numerical simulation of far-from-equilibrium
chemical reactions@20,21#. Our aim is here to develop th
probabilistic study of the Hopf bifurcation at the level of th
Liouville equation, in which the dynamics is considered
be deterministic, so that the effect of the stochastic fluct
tions will not be considered in the present paper. Instead,
study deals with the deterministic time evolution of statis
cal ensembles of trajectories issued from random initial c
ditions and the characterization of such evolution in terms
the spectrum of the Liouville equation.

Near a Hopf bifurcation, we expect the emergence of s
tained oscillations so that the asymptotic states are no lon
stationary in contrast with the asymptotic behavior nea
©2001 The American Physical Society32-1
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pitchfork bifurcation. After the Hopf bifurcation, a periodi
orbit—also called limit cycle—coexists with an unstable s
tionary point in phase space. A fundamental problem
therefore to understand how the emergence of oscillat
manifests itself in the spectrum of the Liouville equati
before, at, and after the Hopf bifurcation.

In systems with periodic orbits, the Liouvillian spectru
can, in principle, be calculated with the Cvitanovic´-Eckhardt
trace formula @3# and its cycle expansion@2#. In this
periodic-orbit theory of classical systems, the Liouvillian
Pollicott-Ruelle resonances can be obtained as the zeros
Selberg-Smale zeta function@2–4#. However, in periodic-
orbit theory, few results are known about systems under
ing bifurcations such as the Hopf bifurcation. In this rega
the coexistence of a stationary point with a periodic orbi
of very special interest because the stationary point con
utes to the Liouvillian spectrum by extra resonances that
not predicted by the periodic-orbit theory. In the present
per, one of our goals is to show that the periodic-orbit the
can be extended to incorporate the effects of the coexis
stationary points.

Furthermore, we shall explicitly construct the eigensta
and other root states that are associated with the Liouvil
resonances. We shall see that special methods are requir
carry out this construction in the presence of certain deg
eracies between a resonance of the limit cycle and ano
one associated with the coexisting unstable stationary po
Indeed, such degeneracies can lead to Jordan-block s
tures involving Jordan-type root states beside the stan
eigenstates. The knowledge of all these eigenstates and
root states provides us with the asymptotic time depende
of all the possible time-correlation functions of a system u
dergoing a Hopf bifurcation.

The plan of the paper is the following. The general theo
of the Liouvillian dynamics is summarized in Sec. II, whe
an extended trace formula including the effect of the stati
ary points is derived. In this way, we obtain explicit expre
sions for the Liouvillian resonances of generic systems w
stationary points coexisting with a periodic attractor. In S
III, we present the Hopf bifurcation and we derive the Lio
villian spectrum for a general Hopf bifurcation from the e
tended trace formula. In Sec. IV, we derive the detailed sp
tral decomposition of the normal form near the Ho
bifurcation: before, at, and after criticality. Conclusions a
drawn in Sec. V.

II. GENERAL THEORY

A. Time evolution of statistical ensembles

We consider a deterministic dynamical system given b
set of first-order differential equations of the form

Ẋ5F~X;m!, ~1!

whereX are variables belonging to a phase spaceM#Rd, F
is a time-independent vector field defined inM, m is a set of
parameters, and the dot denotes a derivative with respe
the time t: Ẋ5dX/dt. The vector field~1! induces a one-
05623
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parameter time-continuous group called theflow, which
maps each initial condition onto the position at a curre
time t

Xt5FtX0 , ~2!

and which defines the trajectoryXt issued from the initial
conditionX0.

If we know the flow~2!, we can infer the properties of th
time evolution of a statistical ensemble of trajectories$Xt

( i )

5FtX0
( i )% i 51

` issued from random initial condition
$X0

( i )% i 51
` . If the initial conditions are randomly distributed

we have to introduce the probability density of the initi
conditions as

r0~X!5 lim
N→`

1

N (
i 51

N

d~X2X0
( i )!,

such that

E r0~X!dX51, ~3!

which is assumed to be a smooth function in phase spac
an experiment where a statistical ensemble of trajectorie
the dynamical system~1! evolves in time from random initia
conditions, a quantity of great importance is the mean va
i.e., the statistical average of an observable quantity defi
over the phase space by the functionA(X). At the current
time t, the mean value of this observable is given by

^A& t5 lim
N→`

1

N (
i 51

N

A~FtX0
( i )!5E A~FtX!r0~X!dX

5E A~X!r t~X!dX, ~4!

where we have introduced the probability density at timet as

r t~X!5E d~X2FtY!r0~Y!dY5U]F2t

]X
~X!Ur0~F2tX!

[~ P̂tr0!~X!, ~5!

which defines the so-called Frobenius-Perron operatorP̂t.
We notice that a time-dependent mean value such as Eq~4!
defines a time-correlation function between the initial dens
r0 and the observable quantityA measured at timet. There-
fore, the present framework describes the time evolution
general time-correlation functions.

Since the probability is conserved locally in phase spa
the probability density obeys a partial differential equation
continuity known as the Liouville equation@1,22#

] tr t52div~Fr t![L̂r t . ~6!

The Liouvillian operatorL̂ is the generator of the Frobenius
Perron operator:P̂t5exp(L̂t). The Frobenius-Perron operato
provides, therefore, the global time evolution of the dens
over a finite-time interval, while the Liouvillian operato
2-2
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LIOUVILLIAN DYNAMICS OF THE HOPF BIFURCATION PHYSICAL REVIEW E 64 056232
rules the time evolution over an infinitesimal time step.
this regard, both operators and their properties are thus in
connected.

For conservative systems, the Liouvillian operator defin
as in Eq.~6! is anti-Hermitian. However, for dissipative sy
tems, the Liouvillian operator is not anti-Hermitian. Th
property has its origin in the nonpreservation of phase-sp
volumes in a dissipative system for which

L̂1L̂†52~div F! Î , ~7!

where L̂†5F•]X is the adjoint ofL̂ and Î is the identity
operator. Therefore, the spectral theory of the Liouvilli
operator and of the related Frobenius-Perron operator is
general, more complicated than for Hermitian or an
Hermitian operators.

B. Spectral decomposition

The time evolution of statistical ensembles can be cha
terized in terms of the relaxation rates toward the station
invariant measure that is reached after long times. These
laxation rates can be considered as complex eigenvalues$sj%
of the Liouvillian operator with Resj<0. Since the Liouvil-
lian operator is not anti-Hermitian, we should expect in ge
eral that the left and right eigenstates be different and
Jordan-block structures be possible@23#. In the case of a
spectrum of eigenvalues, a possible spectral decompos
of the Liouvillian operator is thus

L̂5(
j

uc j&sj^c̃ j u1(
k

~ uck,1&uck,2&)

3S sk 1

0 sk
D S ^c̃k,1u

^c̃k,2u
D 1•••, ~8!

with possible higher-dimensional Jordan blocks. The rig
and left-root states$uck,l&,^c̃k,l u% are supposed to form
complete biorthonormal basis

^c̃ l ,muc l 8,m8&5d l l 8dmm8 ,

(
l ,m

uc l ,m&^c̃ l ,mu5 Î , ~9!

with l 5 j ,k, . . . , andm50” ,1,2, . . . .
As a consequence of Eq.~8!, the Frobenius-Perron opera

tor has the eigenvalues$exp(sjt)% and the spectral decompo
sition

P̂t5eL̂t5(
j

uc j&e
sj t^c̃ j u1(

k
~ uck,1&uck,2&)

3esktS 1 t

0 1D S ^c̃k,1u

^c̃k,2u
D 1•••. ~10!

Many works@4–6,8,11,12# have shown that such eigenvalu
problems have to be conceived on suitable functional spa
of smooth enough test functions in order to give a mean
05623
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to the right and left eigenstates and other root states that
out to be Schwartz distributions@24#, as well as to justify the
spectral decomposition that holds on a suitable Gel’fand t
let @25#.

According to Eq.~4!, the spectral decomposition~10! pro-
vides the time evolution of the mean value of an observa
in the following form:

^A& t5^AuP̂tur0&

5(
j

^Auc j&e
sj t^c̃ j ur0&1(

k
(^Auck,1&^Auck,2&)

3esktS 1 t

0 1D S ^c̃k,1ur0&

^c̃k,2ur0&
D 1•••. ~11!

We observe that the right-root states are distributions ac
on the observables, while the left-root states are distributi
acting on the initial densities. Since the root states
Schwartz distributions, both the observables and the in
densities should be smooth enough test functions.

We notice that the spectral decomposition~11! provides
the asymptotic behavior of the mean value at arbitrarily lo
times t→1`. Indeed, in the particular case where the re
parts of the eigenvalues are ordered as

s050.Res1>Res2>•••, ~12!

the leading eigenvalues050 determines the limiting value
of the mean value as

lim
t→1`

^A& t5^Auc0&^c̃0ur0&, ~13!

while the next-to-leading eigenvalues determine the slow
relaxation modes toward the asymptotic stationary state
the particular case where the eigenvalues050 is unique and
that Eq.~12! holds, the system is known to be ergodic a
mixing @4#.

The previous considerations show that the root states
be explicitly constructed by studying the asymptotic beh
ior of the mean value of an observable like Eq.~4! at arbi-
trarily long timest→`. This asymptotic behavior provide
the spectral decomposition of the Frobenius-Perron oper
and, hence, of the Liouvillian operator, by identification
the terms in Eq.~11!. This spectral decomposition is vali
only for positive timest.0 and it therefore corresponds t
the forward semigroup. We have used this method to c
struct the spectral decomposition of the Liouvillian opera
near a pitchfork bifurcation in our previous work@8# and we
shall here apply this method to the Hopf bifurcation.

Let us remark that a continuous spectrum of Liouvillia
eigenvalues is expected when the dynamics presents po
law relaxations at criticality@8#. In this case, the spectra
2-3
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P. GASPARD AND S. TASAKI PHYSICAL REVIEW E64 056232
decomposition can also be constructed by studying
asymptotic time evolution of the mean value of an obse
able att→1`.

The past asymptotic behavior tot→2` leads to another
spectral decomposition corresponding to the backward se
group.

C. Trace formula

As long as we are interested in the eigenvalues, th
exists a systematic method of calculation based on a t
formula for the Frobenius-Perron operator@2–4#. Indeed, if
we defined the Frobenius-Perron operator by its spectral
composition ~10! in the biorthonormal basis~9!, its trace
would be given by

Tr P̂t5Tr eL̂t5(
j

esj t12(
k

eskt1•••, ~14!

where the first terms correspond to the nondegenerate e
values, the second to the doubly degenerate eigenvalues
This formal result shows that the trace of the Frobeni
Perron operator is a sum of decaying exponential functi
in spite of the Jordan-block structure. This property allo
us to identify the eigenvalues of the Liouvillian operator.

Now, the trace of the Frobenius-Perron operator can
calculated by noticing that its kernel is given by the Dira
type distribution in Eq.~5!. This distribution gives the con
ditional probability density to move from the initial pointY
to the final pointX during the timet. This conditional prob-
ability density is the analogue of the transition matrix of
Markov chain for a continuous Markov-state space such
the phase space. In this perspective, we can define the
of this transition probability density as

Tr P̂t5Tr eL̂t5E d~X2FtX!dX, ~15!

which is a definition independent of the coordinate system
phase space@2–4#. The contributions to the trace are give
by the trajectories that return to their initial condition after
varying timet according to

X5FtX. ~16!

These closed solutions of the vector field are the station
points, F(Xs)50, and the periodic orbits such thatXp
5FrTpXp whereTp is the prime period andr 51,2,3, . . . , is
the repetition number of the prime period. Both kinds
closed solutions contribute to the trace~15! as long as they
are isolated, i.e., if they do not form continuous familie
Otherwise, the integral of the Dirac distribution is not we
defined in Eq.~15!.

Previous works have emphasized the contribution of
stable and isolated periodic orbits that are dense in Axiom
basic invariant sets such as the chaotic attractors and re
lers @2,3,7#. However, stable periodic orbits as well as s
tionary points also contribute to the trace of the Frobeni
Perron operator, which is important in the case of a vec
field with a Hopf bifurcation.
05623
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The trace of the Frobenius-Perron operator directly
pends on the linear stability of the closed solutions, wh
we first assume to be hyperbolic, i.e., without marginal s
bility eigenvalue. The linear stability of a stationary point
characterized in terms of the vector field linearized near
stationary point

dẊ5]XF~Xs!•dX, ~17!

which has the solution

dXt5exp@]XF~Xs!t#•dX0 . ~18!

The matrix of the linearized vector field has in generald
eigenvalues$js,j% j 51

d , which characterize the linear stability
The Lyapunov exponents of the stationary point are given
ls,j5Rejs,j . None of them vanishes because of the assum
hyperbolicity.

The linear stability of a periodic orbit is characterized
terms of the linearized Poincare´ map in a surface of section
transverse to the periodic orbit. If we suppose that the pha
space variables separate into one variableXi parallel to the
periodic orbit and (d21) variablesX' transverse to the pe
riodic orbit, an infinitesimal perturbation of the periodic orb
is mapped after one period onto

dX',r 115@]X'
F

'

Tp~Xp!#•dX',r[mp•dX',r , ~19!

where F' is the transverse component ofF and we have
introduced the (d21)3(d21) matrix mp of the linearized
Poincare´ map. Its (d21) eigenvalues$Lp,j% j 51

d21 characterize
the linear stability of the periodic orbit, which has th
Lyapunov exponentslp,j5(1/Tp)lnuLp,j u. Here, also, be-
cause of the assumed hyperbolicity, no Lyapunov expon
vanishes~except the one corresponding to the direction
the flow!.

Using these results of linear-stability analysis in order
calculate the trace of the Frobenius-Perron operator, we
tain the trace formula

Tr P̂t5Tr eL̂t5(
s

1

udet$I2exp@]XF~Xs!t#%u

1(
p

(
r 51

`
Tpd~ t2rTp!

det$I2@]X'
F

'

Tp~Xp!#
r%u

. ~20!

This formula shows that the trace of the Frobenius-Per
operator diverges like

Tr P̂t;
1

utud
for t→0, ~21!

and that Dirac peaks appear at each positive repetition
each prime period. If we express the trace formula in ter
of the stability eigenvalues of the stationary points and of
periodic orbits, we obtain
2-4
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LIOUVILLIAN DYNAMICS OF THE HOPF BIFURCATION PHYSICAL REVIEW E 64 056232
Tr P̂t5Tr eL̂t5(
s

(
l,m50

`

expF (
Rejs,j ,0

l jjs,j t

2 (
Rejs,j .0

~mj11!js,j tG1(
p

(
r 51

`

Tpd~ t2rTp!

3 (
l,m50

` S )
uLp,j u,1

Lp,j
l j

)
uLp,j u.1

uLp,j uLp,j
mj D r

, ~22!

for t.0.
We observe that the Liouvillian eigenvalues associa

with the basic invariant set formed by a stationary point
given by

slm5 (
Rejs,j ,0

l jjs,j

2 (
Rejs,j .0

~mj11!js,j , stationary point, ~23!

with l j ,mj50,1,2,3, . . . . These resonances satisfy the rela
ation condition Reslm<0 of the forward semigroup.

On the other hand, after a Laplace transform of Eq.~22!
@2–4#, we obtain the Liouvillian resonances associated w
the basic invariant set formed by a single isolated perio
orbit as

slmn5
1

Tp
F (

uLp,j u,1
l j ln Lp,j2 (

uLp,j u.1
~ lnuLp,j u1mj ln Lp,j !

12p inG , periodic orbit, ~24!

with l j ,mj50,1,2,3, . . . , andn50,61,62,63, . . . . These
resonances also satisfy the relaxation condition Reslmn<0
of the forward semigroup.

Besides, the Liouvillian resonances associated with a c
otic basic invariant set in which there is a countable se
dense unstable periodic orbits are given by the zeros
Selberg-Smale zeta function as shown elsewhere@2–4#. In
the case of a single periodic orbit, the zeros of this z
function are precisely the Liouvillian resonances given
Eq. ~24!.

The same method can also be used for isolated statio
points or periodic orbits of marginal stability as shown belo
for the Hopf bifurcation.

III. THE HOPF BIFURCATION AND ITS LIOUVILLIAN
RESONANCES

A. Hopf theorem

The Hopf bifurcation is a transition in which oscillation
are born out of a stationary solution in a nonlinear dynam
system. This bifurcation has been much studied since
05623
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seminal work by Hopf@13#. A version of the theorem de
scribing this bifurcation is provided by

Theorem. We suppose that the system~1! with XPRd and
mPR has a stationary point which is put at the origin f
convenience:Xs(m)50 for all m. The matrix]XF(Xs;m) of
the linearized vector field at the critical parameter valuem
50 is supposed to have a simple pair of pure imagin
eigenvalues, j6(m50)56 i uIm j6(m50)u, and all the
other eigenvalues have a negative real part Rej j (m50),0
for j 53,4, . . . ,d. Moreover, the pair of simple imaginar
eigenvalues is supposed to satisfy

d

dm
Rej6~m50!Þ0. ~25!

Then there is a unique center manifold passing throughXs
50,m50) and a smooth system of coordinates for which
vector field has the form

ż5z~c01c2uzu21c4uzu41••• ! ~26!

on the center manifold withz5x1 iy . The Hopf bifurcation
occurs at the critical parameter valuem50 where Rec050.

If Rec2,0, the stationary point is a stable focus f
Rec0,0. For Rec0.0, the stationary point destabilizes int
an unstable focus and gives birth to a stable periodic or
The Hopf bifurcation is said to be supercritical.

If Rec2.0, the stationary point is a stable focus f
Rec0,0, where it coexists with an unstable periodic orb
At Rec050, the unstable periodic orbit merges with the s
tionary point, which becomes an unstable focus for Rec0
.0. In this case, the Hopf bifurcation is said to be subcr
cal.

If Rec2Þ0, the radius of the periodic orbit vanishes lik
Aumu near the critical valuem50 where its period is

T~m50!5
2p

uIm j6~m50!u
5

2p

uIm c0~m50!u
. ~27!

See Refs.@1,14–16#.
We remark that the codimension-two case with Rec2

50 is a marginal situation connecting the supercritical a
subcritical cases. Near such a codimension-two vector fi
more than a single periodic orbit may exist. We shall he
restrict ourselves to the study of the codimension-one H
bifurcation in the vicinity of the sole critical parameter valu
m50 and of the bifurcating stationary pointXs(m50). Sta-
tionary points and periodic orbits outside this vicinity a
ignored. Moreover, we notice that, in the subcritical case,
dynamics near the Hopf bifurcation is globally unstable sin
the trajectories escape from the phase-space region u
study, unless Rec0,0 and the initial condition belongs to
the basin of attraction of the stable focus. Therefore, we s
only study the supercritical case where an attractor ex
throughout the bifurcation. The attractor is the stable foc
before the bifurcation and the stable limit cycle after t
bifurcation when the focus has become repelling.

The result that the vector field reduces to the tw
dimensional vector field~26! in the sense of the center man
2-5
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P. GASPARD AND S. TASAKI PHYSICAL REVIEW E64 056232
fold theorem can be derived by the theory of normal for
@1,15#. This result shows that the trajectories are attrac
toward a two-dimensional center manifold on a transi
time scale. After this transitory behavior which is not d
scribed by Eq.~26!, the trajectories follow, on a long-tim
scale, a nontrivial dynamics very close to the center ma
fold. The projection on the center manifold of this long-tim
dynamics is ruled by the vector field~26!. Accordingly, we
can restrict the study of the long-time dynamics of a Ho
bifurcation to the study of the vector field~26!.

After an appropriate rescaling of the parameters, we
set

c0[m1 iv, ~28!

c2[2a2 ib5212 ib. ~29!

The last equality is obtained after a rescaling of the pha
space variables under our assumption that the Hopf bifu
tion is supercritical so thata.0.

Introducing polar coordinates

z5x1 iy5r exp~ iu!, ~30!

the vector field~26! becomes

ṙ 5r @m2r 21O~r 4!#,

u̇5v2br 21O~r 4!. ~31!

The linearized radial equation is

d ṙ 5@m23r 21O~r 4!#dr . ~32!

Consequently, the focus at the originr 50 has the stability
eigenvalues:

focus: j65m6 iv, ~33!

so that the focus is stable ifm,0 and unstable ifm.0.
On the other hand, the periodic orbit exists at the radi

r p5Am1O~m3/2! if m.0, periodic orbit. ~34!

Inserting this radius in the angular equation of Eqs.~31!, we
infer that the periodic orbit has the period

T~m!5
2p

uv2bm1O~m2!u
, ~35!

and the Lyapunov exponent

l~m!5
1

T~m!
lnuL~m!u522m1O~m2!, ~36!

corresponding to a positive stability eigenvalue 0,L(m)
,1. Typical phase portraits of the vector field~31! are de-
picted in Fig. 1.
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B. The Liouvillian operator

The Liouvillian operator of a vector field undergoing th
Hopf bifurcation can be written in polar coordinates. If th
equations of motion are

ṙ 5r f ~r !,

u̇5g~r !, ~37!

the Liouvillian operator is

L̂ r52
1

r

]

]r
@r 2f ~r !r#2g~r !

]r

]u
, ~38!

while its adjoint is

L̂†r51r f ~r !
]r

]r
1g~r !

]r

]u
, ~39!

so that

L̂1L̂†52F2 f ~r !1r
d f~r !

dr G Î . ~40!

C. The Liouvillian resonances

The general theory of the trace formula presented in S
II provides the spectrum of the Liouvillian operator using t
results of the linear stability analysis of the stationary po
and the limit cycle.

The trace of the Frobenius-Perron operator of the vec
field ~31! is given by

Tr P̂t5
1

u122 exp~mt !cosvt1exp~2mt !u
, m,0

~41!

before the bifurcation when there only exists the station
point. When the limit cycle is born, the trace of th
Frobenius-Perron operator becomes

Tr P̂t5
1

u122 exp~mt !cosvt1exp~2mt !u

1(
r 51

`
T~m!

u12L~m!r u
d„t2rT~m!…, m.0 ~42!

FIG. 1. Typical phase portraits of a two-dimensional syst
undergoing a Hopf bifurcation:~a! before criticality form,0; ~b!
after criticality for m.0.
2-6
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with the periodic-orbit contribution fort.0.
Accordingly, the Liouvillian resonances of the forwa

semigroup are given by

sl 1 l 2
5~ l 11 l 2!m1 i ~ l 12 l 2!v, m,0, stable focus,

~43!

with l 650,1,2,3, . . . . Therefore, the spectrum forms a p
ramidal array of resonances before the bifurcation, as
picted in Fig. 2.

After the bifurcation, the resonances become form.0

sm1m2

(f) 52~m11m212!m

2 i ~m12m2!v, unstable focus,

sln
(c)5

1

T~m!
@ l lnuL~m!u12p in#

5 l @22m1O~m2!#1 in@v2bm1O~m2!#,

limit cycle, ~44!

with m6 ,l 50,1,2,3, . . . , and n50,61,62,63, . . . . The
spectrum is now composed of a half lattice of resonances
to the limit cycle together with a pyramidal array of res
nances due to the unstable focus~see Fig. 3!. The resonances
of the limit cycle withl 50 have a vanishing real part so th
Res50 and they control the long-time oscillations of th
system. These resonances with a vanishing relaxation
are the Koopman eigenvalues of the Liouvillian operator

In the following section, we shall obtain the eigensta
and other root states associated with the generalized ei
values~43!–~44! of the Liouvillian operator.

IV. THE HOPF BIFURCATION AND ITS SPECTRAL
DECOMPOSITION

A. The vector field and its Liouvillian operator

Our purpose here is to obtain the full spectral decom
sition of the Liouvillian dynamics of the Hopf bifurcation

FIG. 2. Typical spectrum of Liouvillian resonancessPC before
criticality (m,0).
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We have already calculated the resonances, i.e., the gen
ized eigenvalues. In the present section, we shall const
the corresponding eigenstates and other root states.

Here, we consider the vector field with the nonline
terms responsible for the Hopf bifurcation in the followin
truncated cubic form:

ż5~m1 iv!z2~11 ib!uzu2z, ~45!

where m is the bifurcation parameter. In the polar coord
natesz5r exp(iu), the vector field becomes

ṙ 5m r 2r 3,

u̇5v2br 2. ~46!

The Hopf bifurcation occurs at the critical parameter va
m50. Before the bifurcation (m,0), the stationary point a
the origin is a stable focus, which becomes unstable after
bifurcation (m.0). At criticality (m50), a limit cycle is
born with a radiusr 5Am.

As we explained in Sec. II, the time evolution of the a
erage of an observable can be calculated if we know the fl
~2! of the system. In the case of the vector field~46!, the
equations can be integrated to get the following flow:

Ft: r t5r 0A m

r 0
21~m2r 0

2!exp~22mt !
,

u t5u01~v2mb!t1b lnA m

r 0
21~m2r 0

2!exp~22mt !
.

~47!

For a fixed initial condition at radial distancer 0, Eqs. ~47!
hold for times larger than a critical negative time at whi
the trajectory diverges to infinity

t.tc52
1

2m
ln

r 0
2

r 0
22m

,0. ~48!

FIG. 3. Typical spectrum of Liouvillian resonancessPC after
criticality (m.0). The filled circles are the resonances associa
with the unstable focus, while the open circles are those assoc
with the limit cycle.
2-7
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This critical time tc exists for all values ofr 0 before the
bifurcation m,0, and for trajectories exterior to the lim
cycle with r 0.Am after the bifurcationm.0. For the trajec-
tories inside the limit cycle withr 0,Am, Eqs.~47! hold at
all times. The divergence of the trajectories at the nega
time tc is due to the cubic term in the vector field. Since w
are here interested in the forward semigroup that applie
positive timest.0, we shall always work within the domai
of validity ~48! of Eqs.~47!.

The inverse of the flow~47! is given by

F2t: r 05r tA m

r t
21~m2r t

2!exp~2mt !
,

u05u t2~v2bm!t1b lnA m

r t
21~m2r t

2!exp~2mt !
.

~49!

The Jacobian of the transformation is

r 0 dr0 du05
e22mt

@11r t
2~e22mt21!/m#2

r t drt du t . ~50!

Thanks to Eqs.~47!, we can calculate the time evolutio
of the average of an observable and, consequently, obtain
spectral decomposition of the Liouvillian operator that
here given by

]r

]t
5L̂r52

1

r

]

]r
@r 2~m2r 2!r#2~v2br 2!

]r

]u
. ~51!

In order to obtain the spectral decomposition of the Lio
villian operator, we consider the time evolution of the me
value of an observable~4!, which is given by

^A& t5E dr r du r~r ,u!A@Ft~r ,u!#, ~52!

with r 5r 0 andu5u0 and where we useddx dy5r dr du. In
Eq. ~52!, r denotes the density of initial conditions andA the
observable. Moreover, we introduce the inner product

^fuc&[E
0

`

dr r E
0

2p

du f* ~r ,u!c~r ,u!. ~53!

B. Fourier series

In polar coordinates, both the observable and the ini
density are periodic functions in the angleu of period 2p.
Accordingly, these functions can be expanded in Fou
series

A~r ,u!5
1

A2p
(

n52`

1`

An~r !e1 inu, ~54!

An~r !5E
0

2p du

A2p
e2 inuA~r ,u!, ~55!
05623
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r~r ,u!5
1

A2p
(

n52`

1`

rn~r !e1 inu, ~56!

rn~r !5E
0

2p du

A2p
e2 inur~r ,u!, ~57!

and the coefficients of the Fourier series are functions or
satisfying

A2n~r !5An* ~r !, and r2n~r !5rn* ~r !. ~58!

If we assume that the observable or the density is a func
that is analytic in each of the Cartesian variablesx andy, we
notice that the coefficients of ordern of the Fourier series
behave as

A~x,y! analytic⇒An~r !5r unu f n~r 2!, ~59!

r~x,y! analytic⇒rn~r !5r unugn~r 2!, ~60!

where f n andgn are analytic functions ofr 2.
In the following, we shall treat separately the spect

decomposition in the subcritical (m,0), the critical (m
50), and the supercritical (m.0) regimes.

C. The subcritical regime: µË0

In the subcritical regime, the vector field~46! has no pe-
riodic orbit but a unique stationary point that is a stab
focus. In order to obtain the spectral decomposition~10! of
the Frobenius-Perron operator, we study the asymptotic
havior of the mean value~52! at long positive times, by
performing a Taylor expansion in the small quant
exp(2umut) that vanishes fort→1`. This asymptotic expan-
sion should allow us to identify the eigenstates and other r
states thanks to Eq.~11!.

With this aim, we start from Eq.~52! for the mean value
of an observable, with the flow given by Eqs.~47!. Since
both the observable and the initial density are periodic in
angleu, we expand them in Fourier series according to E
~54! and ~56!. After integration over the angleu, we get

^A& t5 (
n52`

1`

e2 invtE
0

`

dr r S 11
r 2

umu
2

r 2

umu
e22umutD inb/2

3rn~r !An* S re2umut

A11
r 2

umu
2

r 2

umu
e22umutD . ~61!

In the limit t→1`, the quantity exp(2umut) decays to zero
so that the spectral decomposition into decaying exponen
can be obtained by a Taylor expansion of this quantity. Ho
ever, we notice that this quantity appears in the group

j[
re2umut

Aumu1r 2
, ~62!
2-8
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LIOUVILLIAN DYNAMICS OF THE HOPF BIFURCATION PHYSICAL REVIEW E 64 056232
in Eq. ~61!. Therefore, we can equivalently perform the Ta
lor expansion in terms of this new variablej.

Substituting Eq.~62! into Eq. ~61!, we get

^A& t5 (
n52`

1`

e2 invtE
0

`

dr r S 11
r 2

umu D
inb/2

3rn~r !~12j2! inb/2An* S jAumu

A12j2D . ~63!

A Taylor expansion is performed with respect to the varia
j around its limitj501 for t→1`

~12j2! inb/2An* S jAumu

A12j2D
5(

l 50

`
j l

l !

] l

]j l F ~12j2! inb/2An* S jAumu

A12j2D G
j501

.

~64!

Replacing in Eq.~63!, the series in powers ofj l gives us the
different terms corresponding to the different exponential
laxations exp(2lumut). Whereupon, we finally obtain th
spectral decomposition

^A& t5(
l 50

`

(
n52 l

1 l

8 ^Auc ln&eslnt^c̃ lnur&, ~65!

with the expected generalized eigenvalues

sln52 l umu2 inv, l 50,1,2,3, . . . ,

n52 l ,2 l 12, . . . ,1 l 22,1 l , ~66!

and the coefficients

^Auc ln&5
1

l !

] l

]j l F ~12j2! inb/2An* S jAumu

A12j2D G
j501

,

^c̃ lnur&5E
0

`

dr r
~r /Aumu! l

~11r 2/umu!( l 2 inb)/2
rn~r !. ~67!

We notice that the integern is restricted to the values rangin
from 2 l to 1 l by steps of two, hence, the restricted sum(8
in Eq. ~65!. The vanishing of the other terms has its origin
the fact that the observableA is supposed to be analytic ne
the origin in the Cartesian coordinates (x,y), or equivalently
of (z,z* ).

Using the definitions of the Fourier coefficients~55! and
~57!, as well as the inner product~53!, we can obtain the
explicit expression for the right and left eigenstates in ter
of their integral kernels as
05623
e

-

s

c ln~r ,u!5
exp~ inu!

A2p

1

l !

] l

]j l

3F ~12j2! inb/2
1

r
dS r 2

jAumu

A12j2D G
j501

,

c̃ ln~r ,u!5
exp~ inu!

A2p

~r /Aumu! l

~11r 2/umu!( l 1 inb)/2
. ~68!

These eigenstates are biorthonormal

^c̃ lnuc l 8n8&5d l l 8dnn8 . ~69!

We can verify that the kernels~68! are the eigenstates of th
Liouvillian operator ~51! associated with the eigenvalue
~66! in the sense that, form,0,

L̂c ln5slnc ln , ~70!

L̂†c̃ ln5sln* c̃ ln . ~71!

The first line is checked by applying a smooth enough t
function A(r ,u) to both members of the equation. The se
ond line is checked by a direct calculation.

As aforementioned, the assumption of analyticity of t
observables implies that most of the coefficients of the F
rier series ofA vanish atr 50, except those withn52 l ,
2 l 12, . . . ,1 l 22,1 l . As a consequence, the eigenvalu
~66! form a pyramidal array in the plane of the comple
variables, as depicted in Fig. 2. The pyramidal array is t
signature of the stable focus existing before the Hopf bif
cation. Indeed, in the subcritical regime, this stationary po
is the attractor around which the oscillations are damp
The oscillations can be decomposed by the Fourier anal
into their harmonics. It turns out that the relaxation rate
the harmonics increases with their frequency. As a con
quence, the relaxation of the oscillations creates a pyram
array of Liouvillian resonances. We notice that, as the cr
cality is approached, the relaxation rates decrease so tha
pyramidal array becomes wider and wider because the r
nances approach the imaginary axis. Near criticality, the
spacing between the resonances also decreases becau
damping decreases, so that the resonances accumulate
lines, as shown below.

D. The critical regime: µÄ0

At criticality, the stationary point becomes a slowly a
tracting focus. Equations~46! can be integrated and the flow
~47! becomes

Ft: r t5
r 0

A112r 0
2t

,

u t5u01vt2b lnA112r 0
2t, ~72!

which holds for
2-9
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t.tc52
1

2r 0
2
,0, ~73!

and, thus, for our purpose to derive a forward semigro
valid for positive timest.0. We observe that the radial po
sition relaxes to zero according to the power lawr t;1/At,
although this relaxation was exponential in the subcriti
case. This slow dynamics is a characteristic feature of crit
systems at bifurcations and it is referred to as acritical slow-
ing down.

As in Sec. IV C, we calculate the time evolution of th
average value of an observable by substituting the crit
flow ~72! in Eq. ~52!. By using the Fourier series~54! and
~56!, we get

^A& t5 (
n52`

1`

e2 invtE
0

`

dr r rn~r !

3An* S r

A112r 2t
D ~112r 2t ! inb/2. ~74!

Since the argument of the functionsAn* tends to zero in the
limit t→1`, we perform the following Taylor expansion:

An* S r

A112r 2t
D 5An* ~0!1(

l 51

` An*
( l )~0!

l !

r l

~112r 2t ! l /2
,

~75!

whereAn*
( l )(r ) denotes thel th derivative ofAn* (r ). Here, we

assume the analyticity of the observableA(x,y) in each vari-
ablesx andy so that

An* ~0!50 for nÞ0, ~76!

according to the property~59!. Moreover, we use the follow
ing integral representation

r l

~112r 2t !( l 2 ibn)/2
5

r l 22

2GS l 2 ibn

2 D E2`

0

ds exp~st !

3S 2
s

2r 2D ~ l 2 ibn22!/2

expS s

2r 2D .

~77!

This formula shows that the spectrum of relaxation rate
continuous at criticality, although it is discrete away fro
criticality.

Substituting the results~75!, ~76!, and~77! into the expan-
sion ~74!, we obtain finally the spectral decomposition

^A& t5^Auc0&^c̃0ur&1 (
n52`

1` E
2`

0

ds^Aucsn&

3e(s2 inv)t^c̃snur&, ~78!

with the coefficients
05623
p

l
al

al

is

^Auc0&5A0* ~0!,

^c̃0ur&5E
0

`

dr r r0~r !,

^Aucsn&5(
l 51

` An*
( l )~0!

2 l ! GS l 2 ibn

2 D S 2
s

2 D l 2 ibn22/2

,

^c̃snur&5E
0

`

dr r 11 ibn expS s

2r 2D rn~r !. ~79!

With the definitions of the Fourier coefficients~55! and~57!
and of the inner product~53!, the kernels of the right and lef
eigenstates can be obtained as

c0~r ,u!5
1

A2p
Fd~r 2R!

r G
R501

,

c̃0~r ,u!5
1

A2p
,

csn~r ,u!5
exp~ inu!

A2p
(
l 51

`
1

2 l ! GS l 2 ibn

2 D
3S 2

s

2 D ~ l 2 ibn22!/2F ] l

]Rl

d~r 2R!

r G
R501

,

c̃sn~r ,u!5
exp~ inu!

A2p
r 2 ibn expS s

2r 2D . ~80!

The kernels~80! can be verified to be the eigenstates of t
Liouvillian operator~51! with m50 associated with the gen
eralized eigenvalues5s2 inv.

As aforementioned, the spectrum is here continuous
extends froms5 inv to s5 inv2` with n50,61,62,
63, . . . , ~see Fig. 4!. Consequently, the spectral decomp
sition is expressed as an integral over the continuous re

FIG. 4. Continuous spectrum of the spectral decomposition~78!
of the cubic vector field~46! at criticality (m50).
2-10



e
he
la

di
re
r-
e
.

n

g
-
he

is
he

nc
ge
r

on
fo

et
t
iv

th
li

re
r a
ta

c-
om-

-
e-

gle
is

-
ries

be
tity

LIOUVILLIAN DYNAMICS OF THE HOPF BIFURCATION PHYSICAL REVIEW E 64 056232
ation rateusu, instead of a discrete sum over a discrete sp
trum of resonances. Accordingly, the coefficients of t
spectral decomposition also depend on the continuous re
ation rateusu.

The continuous character of the Liouvillian spectrum
rectly implies that the time evolution obeys a power-law
laxation at criticality. The power-law relaxation of the ave
age ^A& t to the stationary value easily follows from th
spectral decomposition~78! and~79!. Indeed, because of Eq
~79!, we have for smallusu

^Aucsn&;
1

Ausu
e2 inb lnAusu ^c̃snur&;const, ~81!

and, because of the Abelian theorem for the Laplace tra
form @26#, we have

E
2`

0

ds^Aucsn&e
(s2 inv)t^c̃snur&;

1

At
e2 in(vt2b lnAt).

~82!

The next terms of the asymptotic series decay as 1/At l with
l 52,3, . . . ,multiplied by the oscillating factor. The leadin
term with n50 decays as 1/At. Therefore, the statistical av
erage^A& t relaxes to its stationary value according to t
power law 1/At.

We notice that the continuous Liouvillian spectrum
caused by the critical slowing down of the amplitude of t
oscillations at the Hopf bifurcation, as described by Eq.~72!.
Moreover, the continuous spectrum has, for conseque
that the probability densities and the statistical avera
ruled by the Frobenius-Perron operator have power-law
laxation as 1/At in the long-time limitt→`. We can under-
stand this power-law relaxation by the collapse into a c
tinuous spectrum of the numerous resonances existing be
and after the Hopf bifurcation~see Secs. IV C and IV E!.
Indeed, away from the bifurcation, the spectrum is discr
and each resonance corresponds to an exponential relaxa
Under such circumstances, the statistical averages are g
by the sum of many exponential functions of time. When
resonances collapse into a continuous spectrum at critica
the sum of many exponential functions with distributed
laxation rates turns into an asymptotic power-law behavio
long times, which explains the power-law relaxation of s
tistical averages occurring at the Hopf bifurcation.

E. The supercritical regime: µÌ0

In the supercritical regime, the vector field~46! has an
unstable focus atr 50 with the stability eigenvaluesm6 iv
and a periodic orbit~limit cycle! at r 5Am with the
Lyapunov exponentl522m. The phase space (r ,u) sepa-
rates into two domains:

Am<r ,`, the exterior domain; ~83!

0<r ,Am, the interior domain. ~84!
05623
c-

x-

-
-

s-

e,
s

e-

-
re

e
ion.
en

e
ty,
-
t

-

The first domain is exterior to the limit cycle while the se
ond is interior. The average of an observable can be dec
posed into two terms, one corresponding to each domain

^A& t5^A& t
ex1^A& t

in . ~85!

The domains~83!–~84! will be treated separately. The exte
rior domain will be treated before the interior domain b
cause its treatment is easier.

1. The exterior domain

The exterior domain is easier because it contains a sin
closed solution of the flow, namely, the limit cycle, which
the boundary of the exterior domain.

For the flow given by Eq.~47!, we calculate the time
evolution of the mean value~52! of an observable. We ex
pand the observable and the initial density in Fourier se
of the angleu according to Eqs.~54! and ~56! and we inte-
grate over the angle to get

^A& t
ex5 (

n52`

1`

e2 in(v2mb)tE
Am

`

dr r S r

Am
D inb

3rn~r ! ~11z! inb/2An* SA m

11z D , ~86!

where we have introduced

z[S m

r 2
21D e22mt. ~87!

This quantity decays to zero in the limitt→1` so that the
spectral decomposition into decaying exponentials can
obtained by a Taylor expansion in powers of the quan
~87! as

~11z! inb/2An* SA m

11z D
5(

l 50

`
z l

l !

] l

]z lF ~11z! inb/2An* SA m

11z D G
z502

.

~88!

Substituting the results~88! into the expression~86!, we
obtain the decomposition

^A& t
ex5 (

n52`

1`

(
l 50

`

^Auc ln
ex(c)&esln

(c)t^c̃ ln
ex(c)ur&, ~89!

with the generalized eigenvalues

sln
(c)522 lm2 in~v2mb!, l 50,1,2,3, . . . ,

n50,61,62,63, . . . , ~90!

and the coefficients
2-11
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^Auc ln
ex(c)&5

1

l !

] l

]z l F ~11z! inb/2An* SA m

11z D G
z502

,

^c̃ ln
ex(c)ur&5E

Am

`

dr r S r

Am
D inbS m

r 2
21D l

rn~r !.

~91!

In the present supercritical case, the integersl andn have no
constraint becauseAn* is here evaluated on the limit cycle a
r 5AmÞ0 so that the analyticity condition atr 50 plays no
role here. As a consequence, the resonances associated
the external side of the limit cycle form a half lattice.

By the definitions of the Fourier coefficients~55! and~57!
and of the inner product~53!, the right and left eigenstate
can be explicitly expressed in terms of their integral kern
as

c ln
ex(c)~r ,u!5

exp~ inu!

A2p

1

l !

] l

]z l F ~11z! inb/2
1

r

3dS r 2A m

11z D G
z502

,

c̃ ln
ex(c)~r ,u!5

exp~ inu!

A2p
S r

Am
D 2 inbS m

r 2
21D l

u~r 2Am!,

~92!

whereu(r 2Am) denotes the Heaviside function that is t
characteristic function of the exterior domain.

2. The interior domain

The interior domain has the stable limit cycle for i
boundaryr 5Am and contains the unstable focus atr 50.
We may expect that the dynamics on the internal side of
limit cycle also produces the half lattice of the resonan
~90!. Furthermore, we also find the resonances associ
with the unstable focus@cf. Eq. ~44!#. The expected reso
nances are thus:

sln
(c)522lm2 in~v2mb!,

with l PN & nPZ, stable cycle; ~93!

smn
(f) 52~m12!m2 i nv, with mPN

andn52m,2m12, . . . ,m22,m, unstable focus.
~94!

This spectrum is depicted in Fig. 5.
We observe in Fig. 5 that the resonances of the limit cy

coincide with those of the unstable focus ifn50 because
these resonances are integer multiples of2m, as shown by
Eqs. ~93! and ~94!. This degeneracy of the resonance sp
trum leads to the formation of a Jordan-block structure in
spectral decomposition of the Liouvillian dynamics in t
interior domain, as shown below. We notice that this deg
eracy would be lifted if the normal form of the Hopf bifur
05623
with

s

e
s
ed
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e
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cation~26! was truncated after the quintic term instead of t
cubic term, i.e., ifc4Þ0. In our cubic system, no furthe
degeneracy occurs under the condition that

v2mb

v
Þ

n8

n
, with n,n8PN. ~95!

Now, we calculate the mean value~52! of an observable
for the flow ~47!. After expanding both the observable an
the initial density in the Fourier series and after integrat
over the angleu, we get

^A& t
in5 (

n52`

1`

e2 in(v2mb)tE
0

Am
dr r

3F r 2

m
1S 12

r 2

m
D e22mtG inb/2

rn~r !

3An*F r

Ar 2

m
1S 12

r 2

m
D e22mtG . ~96!

In the limit t→1`, this expression becomes

^A& t
in5 (

n52`

1`

^Auc0n
in(c)&es0n

(c)t^c̃0n
in(c)ur&1R0~ t !, ~97!

where the leading resonances are given by

s0n
(c)52 in~v2mb!, with nPZ, ~98!

their corresponding left and right eigenstates by

^Auc0n
in(c)&5An* ~Am!,

^c̃0n
in(c)ur&5E

0

Am
dr r S r

Am
D inb

rn~r !, ~99!

FIG. 5. Spectrum~93!–~94! of the Liouvillian resonancess
PC of the cubic vector field~46! after criticality (m.0). Notice the
degeneracies for the resonances on Ims50. The filled circles are
the resonances associated with the unstable focus, while the
circles are those associated with the limit cycle.
2-12
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and where the rest decays faster than the leading term

uR0~ t !u,O„exp~22mt !exp~«t !…, ~100!

with «.0. We observe that the resonances~98! take the
values given by Eq.~93! with l 50, as expected. These res
nances are associated with the limit cycle because the
eigenstatesc0n

in(c) have the limit cycler 5Am for support.
In order to obtain further resonances, we need to perfo

the asymptotic expansion of the rest in Eq.~97!. We consider
separately the contribution for zero Fourier indexn50, and
the other contributions fornÞ0:

R0~ t !5R0,0~ t !1 (
nÞ0

R0,n~ t !, ~101!

with

R0,n~ t !5e2 in(v2mb)tE
0

Am
dr r S r

Am
D inb

rn~r !

3F ~11z! inb/2An* SA m

11z D 2An* ~Am!G ,
for n50,1,2,3, . . . , ~102!

where we have introduced here again the quantity~87!.
On the one hand, the contributionsR0,n(t) with nÞ0 can

be treated as the leading terms. Equation~88! can here also
be used atz501 instead ofz502 in order to obtain

~11z! inb/2An* SA m

11z D
5An* ~Am!1

1

2 S m

r 2
21D e22mt@ inb An* ~Am!

2AmAn*
8~Am!#1•••. ~103!

Inserting into Eq.~102!, we get

R0,n~ t !5^Auc1n
in(c)&es1n

(c)t^c̃1n
in(c)ur&1R1,n~ t !, ~104!

with the next-to-leading resonances

s1n
(c)522 m2 in~v2mb!, for nÞ0, ~105!

their corresponding left and right eigenstates

^Auc1n
in(c)&5

inb

2
An* ~Am!2

Am

2
An*

8~Am!,
05623
ht

m

^c̃1n
in(c)ur&5E

0

Am
drS r

Am
D inb

m2r 2

r
rn~r !, for nÞ0,

~106!

and the rest

uR1,n~ t !u,O„exp~23mt !exp~«t !…. ~107!

According to the analyticity condition~60!, we have that
rn(r );r unu near the origin so that the integral of^c̃1n

in(c)ur& in
Eq. ~106! converges atr 50 under the conditionnÞ0.
Therefore, the conditionnÞ0 is consistently satisfied. Th
resonances~105! have the values expected from Eq.~93!
with l 51. They are also associated with the limit cycle b
cause the right eigenstates have the limit cycler 5Am for
support.

On the other hand, the contributionR0,0(t) corresponding
to the casen50 requires a separate treatment becaus
contains the asymptotic behavior caused by the degene
between the resonance of the limit cycle and another fr
the unstable focus both decaying as exp(22mt). Since the
unstable focus has an opposite stability with respect to
limit cycle, we need to perform a change of variables fro
the initial condition (r ,u) to the current point at timet,
which is given by (r 8,u8)5Ft(r ,u). Thanks to the inverse
mapping~49! and its Jacobian~50!, we obtain

R0,0~ t !5E
0

Am
dr8

r 8e22mt

@11r 82~e22mt21!/m#2

3r0F r 8e2mt

A11r 82~e22mt21!/m
G @A0* ~r 8!2A0* ~Am!#.

~108!

If we took the limit t→` at this stage, we would encounte
a problem because the integral of the leading term of
asymptotic expansion diverges atr 85Am. In order to cure
this divergence, we separate the bracket in Eq.~108! as

A0* ~r 8!2A0* ~Am!5A0* ~r 8!2A0* ~Am!2A0*
8~Am!

r 822m

2Am

1A0*
8~Am!

r 822m

2Am
. ~109!

The last term of this equation is integrated by going back
the original variables (r ,u). At r 50, another divergence ap
pears that is treated with a similar method as in Eq.~109! but
applied to the densityr0(r ). We obtain
2-13
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~110!
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The integralI in this equation can be carried out to get

I 5
mt

12e22mt
. ~111!

The power law that appears is the evidence of the forma
of a Jordan-block structure due to the degeneracy betw
the resonances corresponding to the invariant sets atr 50
andr 5Am. We can now consider the asymptotic expans
of Eq. ~110! for t→`, and we get

R0,0~ t !5es10
(c)t@^Auc10

(f)&^c̃10
(f) ur&1^Auc10

in(c)&^c̃10
in(c)ur&

1t^Auc10
in(c)&^c̃10

(f) ur&#1O~e23mt!, ~112!

with the next-to-leading resonance given by Eq.~93! with l
51 andn50,

s10
(c)522m, ~113!

and the corresponding Jordan block given by the root st

^Auc10
in(c)&52

Am

2
A0*

8~Am!,

^c̃10
in(c)ur&5E

0

Am
dr

m2r 2

r Fr0~r !2
m

m2r 2
r0~0!G ,

~114!

^Auc10
(f)&5E

0

Am
dr8

r 8

~m2r 82!2

3FA0* ~r 8!2A0* ~Am!2A0*
8~Am!

r 822m

2Am
G ,

^c̃10
(f) ur&5m2r0~0!. ~115!

By comparing with Eq.~8!, we infer thatc10
(f) is a right-root

state, whilec̃10
in(c) is a left-root state of the Liouvillian opera
05623
n
en

n

es

tor. We observe that the right eigenstatec10
in(c) has the limit

cycle for support, while the left eigenstatec̃10
(f) has the un-

stable focus for support. The integral of^c̃10
in(c)ur& converges

at r 50 because the bracket vanishes asr at the origin. More-
over, the integral of̂ Auc10

(f)& converges atr 5Am because
the bracket vanishes as (r 82Am)2 near the limit cycle.

In order to reveal the resonances associated with the
stable focus, we need to obtain the further terms in
asymptotic expansion. For this purpose, we consider the
R1,n(t) in Eq. ~104!, which we obtain by using the Taylo
expansion~103!

R1,n~ t !5e2 in(v2mb)tE
0

Am
dr r S r

Am
D inb

rn~r !

3H ~11z! inb/2An* SA m

11z D 2An* ~Am!

2
z

2
@ inb An* ~Am!2Am An*

8~Am!#J , ~116!

with nÞ0. Since we expect a contribution from the unstab
focus, we carry out a change to the variables (r 8,u8) of the
trajectory at the current timet by using the inverse flow~49!
and the Jacobian~50!. In these new variables, Eq.~87! be-
comesz5(m/r 82)21. An asymptotic expansion leads to th
result

R1,n~ t !5^Auc1n
(f)&es1n

(f) t^c̃1n
(f) ur&1R2,n~ t !, ~117!

where the eigenvalues are given by

s1n
(f)523m2 inv, with n561, ~118!

the corresponding eigenstates by
2-14
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^Auc1n
(f)&5E

0

Am
dr8

r 821 inb

~m2r 82!~5/2!1 i ~nb/2!

3H S m

r 82D inb/2

An* ~r 8!2An* ~Am!2
1

2 S m

r 82
21D

3@ inb An* ~Am!2Am An*
8~Am!#J ,

^c̃1n
(f) ur&5m5/2rn8~0!, ~119!

with n561, and the rest satisfies

uR2,n~ t !u,O„exp~24mt !exp~«t !…. ~120!

We notice thatrn8(0)50 for unu>2, so that the term~117!
is nonvanishing only forn561. We remark that the con
vergence of the integral of̂Auc1n

(f)& in Eq. ~119! is guaran-
teed by the fact that the expression inside the brace is es
tially the quadratic term of the Taylor expansion
(11z) inb/2An* @Am/(11z)# which vanishes as (r 82Am)2

near the limit cycle, whereupon, the integral converges.
Furthermore, we remark that, in the restR0,0(t), there

exists another term of ordere23mt that can be derived in a
similar way, but it vanishes since it is proportional
r08(0)50 @cf. Eq. ~60!#.

For the interior domain, the asymptotic expansion at lo
times of the average is therefore given by Eq.~97! where the
restR0(t) splits as shown in Eq.~101! into the termR0,0(t)
given by Eq.~112! and further termsR0,n(t) given by Eq.
~104!. Moreover, the restR1,n(t) of Eq. ~104! is given by Eq.
~117!. These terms consistently give all the contributions t
decay slower than exp(24mt).

3. The full spectral decomposition

In order to obtain the spectral decomposition in both
interior and the exterior domains, the decompositions~89!
and ~97! @together with all the aforementioned terms giv
by Eqs. ~101!, ~104!, ~112!, and ~117!# must be added ac
cording to Eq.~85!. We note that the right eigenstates relat
to the limit cycle of the exterior and interior domains are t
same

c ln
in(c)5c ln

ex(c)[c ln
(c) , l 50,1; n50,61,62, . . . ,

~121!

as shown by comparing Eq.~91! with Eqs. ~99!, ~106!, and
~114!. Hence, we finally obtain
05623
en-
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e

^A& t5 (
n52`

1`

^Auc0n
(c)&es0n

(c)t^c̃0n
(c)ur&

1 (
n52`
nÞ0

1`

^Auc1n
(c)&es1n

(c)t^c̃1n
(c)ur&

1 (
n561

^Auc1n
(f)&es1n

(f) t^c̃1n
(f) ur&

1~^Auc10
(c)&^Auc10

(f)&!es10
(c)tS 1 t

0 1D S ^c̃10
(c)ur&

^c̃10
(f) ur&

D
1R2~ t !, ~122!

with the eigenvalues given by Eqs.~93! and~94!, and with a
rest decaying as

uR2~ t !u,O„exp~24mt !exp~«t !…. ~123!

The root states associated with the limit cycle are given

^Auc0n
(c)&5An* ~Am!, ~124!

^Auc1n
(c)&5

ibn

2
An* ~Am!2

Am

2
An* 8~Am! , ~125!

^c̃0n
(c)ur&5E

0

`

dr r S r

Am
D inb

rn~r !, ~126!

^c̃1n
(c)ur&5E

0

`

drS r

Am
D inb

m2r 2

r
rn~r ! ~nÞ0!,

~127!

^c̃10
(c)ur&5E

0

`

dr
m2r 2

r Fr0~r !2
m

m2r 2 u~Am2r !r0~0!G ,
~128!

whereu(Am2r ) is the Heaviside function. Besides, the ro
states associated with the unstable focus are given by
~115! and ~119!.

The first term in Eq.~122! corresponds to the oscillatio
on the limit cycle. The other terms decay exponentially
zero and correspond to the relaxation of the probability d
sity that is attracted by the limit cycle and repelled by t
unstable focus.

The asymptotic expansion is here consistently truncate
terms of the order of Eq.~123!. The rest of the asymptotic
expansion can be obtained by recurrence. These follow
terms will correspond to the different resonances depicte
Fig. 5. As Res→2`, the resonance spectrum presents
structure of periodicity22m, as observed in Fig. 5. Within
each period, we find an infinite number of resonances a
ciated with the limit cycle that produce terms similar to tho
in the second line of Eq.~122!, and a growing finite numbe
of resonances associated with the unstable focus that pro
terms similar to those of the third line. At zero frequency, t
double degeneracies yield second-order Jordan blocks s
lar to the one in the fourth line.
2-15
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V. CONCLUSIONS

In this paper, we have constructed the spectral decom
sition of the Liouvillian dynamics of nonlinear vector field
undergoing a Hopf bifurcation, which is the major bifurc
tion giving birth to oscillatory behavior in far-from
equilibrium dissipative systems. The Liouvillian dynami
rules the time evolution of statistical ensembles of determ
istic trajectories issued from random initial conditions.

Our present paper reveals that the oscillations occur
near a Hopf bifurcation manifest themselves in the Liouv
lian spectrum by the existence of complex resonances
real frequencies. We have shown that the Liouvillian sp
trum is discrete before and after the Hopf bifurcation, wh
the discrete spectrum collapses into a continuous spectru
criticality.

We have shown in Sec. IV D that the power-law rela
ation at the transition, a phenomenon also referred to as c
cal slowing down, can be explained by the continuous Lio
villian spectrum at criticality. In the light of the previou
work on the Liouvillian spectrum near a pitchfork bifurc
tion @8#, a continuous spectrum appears to be a general
ture of far-from-equilibrium systems undergoing a bifurc
tion. In the pitchfork bifurcation, the continuous spectrum
purely real because of the absence of oscillation near
bifurcation @8#. However, in the Hopf bifurcation, the con
tinuous spectrum extends to complex eigenvalues becau
the emerging oscillations, as shown in Sec. IV D.

Away from the bifurcation, the Liouvillian spectrum i
discrete and composed of a countable set of resonances
are the analogues of the Pollicott-Ruelle resonances in
present system.

Before the Hopf bifurcation, all these complex resonan
have a nonvanishing relaxation rate because the oscillat
are damped in the subcritical regime. All the subcritical re
nances are associated with the stable focus that attract
trajectories and, therefore, the probability density. Con
quently, the right eigenstates of the spectral decomposi
have the stable focus for support in the subcritical regime
shown in Sec. IV C.

After the Hopf bifurcation, there exist purely imagina
resonances with a real frequency and a vanishing relaxa
rate. These resonances describe the time evolution of st
tical ensembles of trajectories on the attracting periodic or
The resonance at zero frequency and relaxation rate co
sponds to the eigenstate with a stationary distribution al
the limit cycle, while the other resonances with nonzero f
quencies describe the oscillations of the mean values or t
correlation functions and, especially, the harmonics of
periodic but nonlinear asymptotic time evolution. The ex
tence of all these purely imaginary resonances shows tha
system is nonmixing. The resonances with a nonvanish
relaxation rate describe the evolution of the probability d
sity that is repelled by the unstable focus and attracted by
limit cycle.

On the one hand, the periodic orbit contributes to
Liouvillian spectrum by an array of resonances filling a h
lattice, as seen in Figs. 3 and 5. On the other hand,
unstable focus contributes to the spectrum by a pyram
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array of resonances, also seen in Figs. 3 and 5. Contrar
the subcritical pyramidal array depicted in Fig. 2, the sup
critical one is not centered on the origin but on a resona
with a nonvanishing relaxation rate and a zero frequen
This feature has its direct origin in the fact that the focus
unstable after criticality, although it is stable before critica
ity.

In the cubic vector field that we have studied in detail
Sec. IV, the zero-frequency resonances of the unstable fo
turn out to be degenerate with some zero-frequency re
nances of the limit cycle, as it is the case in Fig. 5~but not in
Fig. 3!. As a consequence of these degeneracies, a Jor
block structure appears in the spectral decomposition, le
ing to special asymptotic time evolutions in which the exp
nential relaxation is multiplied by a positive power of th
time, such ast exp(22mt).

For a generic vector field with terms of quintic or high
degrees, these degeneracies and the related Jordan b
would not occur because no degeneracy happens generi
between the resonances of the limit cycle and those of
unstable focus, as seen in Fig. 3.

In conclusion, the present paper shows how the perio
orbit theory of classical dissipative systems must be
tended to include the effect of stationary states coexis
with periodic orbits. These stationary states contribute to
trace formula of the Frobenius-Perron operator by ex
terms involving the linear stability eigenvalues of the statio
ary states, as shown in Sec. II C. These extra terms are
sponsible for the existence of the further resonances ass
ated with the stationary states. Moreover, the meth
developed in the present paper allows us to obtain not o
the full spectrum of Liouvillian resonances but also the
sociated eigenstates~and other root states in the presence
Jordan-block structures!. These time-asymptotic methods a
therefore particularly powerful and promising for the stu
of time-dependent phenomena in nonlinear dynam
systems.

In a future publication, we shall present a systema
method to construct the full spectral decomposition and
shall give the proof of its convergence.
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